Genetic evidence that loss of virulence associated with gacS or gacA mutations in Pseudomonas syringae B728a does not result from effects on alginate production.

نویسندگان

  • D K Willis
  • J J Holmstadt
  • T G Kinscherf
چکیده

Mutations in the global regulatory genes gacS and gacA render Pseudomonas syringae pv. syringae strain B728a completely nonpathogenic in foliar infiltration assays on bean plants. It had been previously demonstrated that gac genes regulate alginate production in Pseudomonas species, while other published work indicated that alginate is involved in the pathogenic interaction of P. syringae on bean plants. Together, these results suggested that the effects of gacS and gacA mutations on virulence in B728a might stem directly from a role in regulating alginate. In this report, we confirm a role for gac genes in both algD expression and alginate production in B728a. However, B728a mutants completely devoid of detectable alginate were as virulent as the wild-type strain in our assay. Thus, factors other than, or in addition to, a deficiency of alginate must be involved in the lack of pathogenicity observed with gacS and gacA mutants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors.

Pseudomonas syringae pv. syringae B728a is a resident on leaves of common bean, where it utilizes several well-studied virulence factors, including secreted effectors and toxins, to develop a pathogenic interaction with its host. The B728a genome was recently sequenced, revealing the presence of 1,297 genes with unknown function. This study demonstrates that a 29.9-kb cluster of genes in the B7...

متن کامل

Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens.

Production of phenazine antibiotics by the biological control bacterium Pseudomonas aureofaciens 30-84 is regulated in part by the PhzI/PhzR N-acyl-homoserine lactone (AHL) response system (L. S. Pierson III, V. D. Keppenne, and D. W. Wood, J. Bacteriol. 176:3966-3974, 1994; D. W. Wood and L. S. Pierson III, Gene 168:49-53, 1996). Two mutants, 30-84W and 30-84.A2, were isolated and were found t...

متن کامل

The GacS sensor kinase regulates alginate and poly-beta-hydroxybutyrate production in Azotobacter vinelandii.

Azotobacter vinelandii produces two polymers: the extracellular polysaccharide alginate and the intracellular polyester poly-beta-hydroxybutyrate (PHB). A cosmid clone (pSMU588) from an A. vinelandii gene library diminished alginate production by A. vinelandii mucoid strain ATCC 9046. The nucleotide sequence and predicted amino acid sequence of the locus responsible for the mucoidy suppression ...

متن کامل

Molecular nature of spontaneous modifications in gacS which cause colony phase variation in Pseudomonas sp. strain PCL1171.

Pseudomonas sp. strain PCL1171 displays colony phase variation between opaque phase I and translucent phase II colonies, thereby regulating the production of secondary metabolites and exoenzymes. Complementation and sequence analysis of 26 phase II mutants and of 13 wild-type phase II sectors growing out of phase I colonies showed that in all these cases the phase II phenotype is caused by spon...

متن کامل

The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor sigmaS and the stress response in Pseudomonas fluorescens Pf-5.

Three global regulators are known to control antibiotic production by Pseudomonas fluorescens. A two-component regulatory system comprised of the sensor kinase GacS (previously called ApdA or LemA) and GacA, a member of the FixJ family of response regulators, is required for antibiotic production. A mutation in rpoS, which encodes the stationary-phase sigma factor sigmaS, differentially affects...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 67 3  شماره 

صفحات  -

تاریخ انتشار 2001